Abstract
Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. Maize seedlings grown in varying concentrations of nitrate for 7 d were used to evaluate the effects on root elongation of a nitric oxide (NO) donor (sodium nitroprusside, SNP), a NO scavenger (methylene blue, MB), a nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine, L-NNA), H(2)O(2), indole-3-acetic acid (IAA) and a nitric reducatse inhibitor (tungstate). The effects of these treatments on endogenous NO levels in maize root apical cells were investigated using a NO-specific fluorescent probe, 4, 5-diaminofluorescein diacetate (DAF-2DA) in association with a confocal microscopy. Elongation of primary roots was negatively dependent on external concentrations of nitrate, and inhibition by high external nitrate was diminished when roots were treated with SNP and IAA. MB and L-NNA inhibited root elongation of plants grown in low-nitrate solution, but they had no effect on elongation of roots grown in high-nitrate solution. Tungstate inhibited root elongation grown in both low- and high-nitrate solutions. Endogenous NO levels in root apices grown in high-nitrate solution were lower than those grown in low-nitrate solution. IAA and SNP markedly enhanced endogenous NO levels in root apices grown in high nitrate, but they had no effect on endogenous NO levels in root apical cells grown in low-nitrate solution. Tungstate induced a greater increase in the endogenous NO levels in root apical cells grown in low-nitrate solution than those grown in high-nitrate solution. Inhibition of root elongation in maize by high external nitrate is likely to result from a reduction of nitric oxide synthase-dependent endogenous NO levels in maize root apical cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.