Abstract
One of the main approaches to preventing skin ageing is to protect fibroblast cells from oxidative stress. The promoting effect of the human amniotic membrane extract (hAME) on re-epithelization, proliferation and migration of cells in wound healing has been already well studied. This experimental study aimed to investigate the antioxidant activity of hAME against hydrogen peroxide (H2 O2 )-induced dermal fibroblast damage. Here, to establish the ageing model, human foreskin fibroblasts (HFFs) were exposed to 200 μM H2 O2 for 2 h. HFFs were treated with 0.1mg/ml AME for 24 or 48h before or/and after H2 O2 exposure. A total of 48h following the H2 O2 treatment, we measured cell proliferation, viability, senescence-associated β-galactosidase (SA-β-Gal), antioxidants and preinflammatory cytokine (IL-6) levels, as well as the expression of senescence-associated genes (P53 and P21). The obtained results indicated that under oxidative stress, AME significantly increased cellular viability and not only promoted the cell proliferation rate but also attenuated apoptotic induction condition (p < 0.001). AME also significantly reversed the SA-β-Gal levels induced by H2 O2 (p < 0.001). Additionally, both pre- and post-treatment regimen by AME down-regulated the expression of senescence marker genes (p < 0.001). Moreover, AME declined different oxidative stress biomarkers such as superoxide dismutase and catalase and increased the glutathione amount. Altogether, our results indicated that AME had a remarkable antioxidant and antiageing activity as pre- and post-treatment regimen, pointing to this compound as a potential natural-based cosmeceutical agent to prevent and treat skin ageing conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have