Abstract

Solar ultraviolet (UV) irradiation leads to distinct changes in the skin connective tissues by degradation of collagen, which is a major structural component in the extracellular matrix. UV irradiation induces the production of matrix metalloproteinases (MMP) capable of attacking native fibrillar collagen and responsible for inhibiting the construction of collagenous extracellular matrix. In this study, we attempted to investigate the protective actions of Rubus coreanus ethanol extract (RCE) on the MMP production and the consequent procollagen/collagen degradation in UV-B-irradiated human dermal fibroblasts. The analytical data showed that Rubus coreanus ethanol extract was mostly comprised of cyanidin 3-rutinoside. Pre-treatment of fibroblasts with this extract inhibited UV-B-induced production of MMP-1, MMP-8 and MMP-13 in dose-dependent manners. In addition, Western blot analysis and immunocytochemical staining assay revealed that RCE markedly augmented the cellular levels of procollagen/collagen declined in UV-B-exposed dermal fibroblasts. These results demonstrate that RCE blocks UV-B-induced increase of the collagen degradation by inhibiting MMP production. Thus, RCE may act as an agent inhibiting excessive dermal collagen degradation leading to the skin photoaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.