Abstract

In anoxic perfused liver, conversion of fructose to lactate was greatly increased to about 3 μmol/min per g liver. This increase in lactate implied that the same amount of ATP was also produced. The rate of metabolism of glucose was less than 10% of that of fructose, as judged by rate of production of lactate. In anoxic liver perfused with fructose, the ATP levels of both the tissue and mitochondria remained high, despite lack of oxygen, thus preventing enzyme leakage and preserving processes requiring ATP, such as bile excretion and urea formation. The mitochondrial oxidative phosphorylation capacity of anoxic liver perfused with fructose was also unimpaired. Spectral analysis of light transmitted through the liver revealed that the mitochondrial electron transfer system was in the completely reduced state during anoxia, indicating that the mitochondria were incapable of synthesizing ATP. These results suggest that fructose metabolism during anoxia resulted in sufficient production of ATP for maintaining the physiological functions of the cells and the oxidative phosphorylation capacity of their mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.