Abstract
There are two complementary approaches to realizing quantum information so that it is protected from a given set of error operators. Both involve encoding information by means of subsystems. One is initialization-based error protection, which involves a quantum operation that is applied before error events occur. The other is operator quantum error correction, which uses a recovery operation applied after the errors have occurred. Together, the two approaches make it clear how quantum information can be stored at all stages of a process involving alternating error and quantum operations. In particular, there is always a subsystem that faithfully represents the desired quantum information. We give a definition of faithful realization of quantum information and show that it always involves subsystems. This supports the ``subsystems principle'' for realizing quantum information. In the presence of errors, one can make use of noiseless, (initialization) protectable, or error-correcting subsystems. We give an explicit algorithm for finding optimal noiseless subsystems. Finding optimal protectable or error-correcting subsystems is in general difficult. Verifying that a subsystem is error correcting is known to involve only linear algebra. We discuss the verification problem for protectable subsystems and reduce it to a simpler version of the problem of finding error-detecting codes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have