Abstract

Brain-derived neurotrophic factor (BDNF)-dependent plasticity in the nervous system is thought to be essential for synaptic growth during development as well as during learning. Both tissue plasminogen activator (tPA) and BDNF have been implicated in activity-dependent plasticity, including long-term potentiation (LTP). Pang et al. (see the news story by Couzin) provide a mechanistic link between tPA and BDNF. The late phase of LTP depends on a sequence of extracellular proteolytic processes involving the proteases tPA and plasmin, and BDNF. Activation of tPA cleaves plasminogen, yielding plasmin, which in turn converts proBDNF to mature BDNF (mBDNF). Interference with any step in this sequential pathway blocks late-phase LTP, which could be rescued by reintroducing elements that occur later in the pathway. P. T. Pang, H. K. Teng, E. Zaitsev, N. T. Woo, K. Sakata, S. Zhen, K. K. Teng, W.-H. Yung, B. L. Hempstead, B. Lu, Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306 , 487-491 (2004). [Abstract] [Full Text] J. Couzin, Withdrawal of Vioxx casts a shadow over COX-2 inhibitors. Science 306 , 384-385 (2004). [Summary] [Full Text]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.