Abstract

BackgroundTransglutamiase-4 (TGase-4), also known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland. The functions of this interesting protein are not clearly defined. In the present study, we have investigated an unexpected link between TGase-4 and the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24), a cytokine known to regulate the growth and apoptosis of certain cancer and immune cells.MethodsFrozen sections of normal and malignant human prostate tissues and human prostate cancer (PCa) cell lines PC-3 and CA-HPV-10, cell lines expressing low and high levels of TGase-4, and recombinant MDA-7/IL-24 (rhMDA-7/IL-24) were used. Expression construct for human TGase-4 was generated using a mammalian expression vector with full length human TGase-4 isolated from normal human prostate tissues. PC-3 cells were transfected with expression construct or control plasmid. Stably transfected cells for control transfection and TGase-4 over expression were created. Similarly, expression of TGase-4 in CA-HPV-10 cells were knocked down by way of ribozyme transgenes. Single and double immunofluorescence microscopy was used for localization and co-localization of TGase-4 and MDA-7/IL-24 in PCa tissues and cells with antibodies to TGase-4; MDA-7/IL-24; IL-20alpha; IL-20beta and IL-22R. Cell-matrix adhesion, attachment and migration were by electric cell substrate impedance sensing and growth by in vitro cell growth assay. A panel of small molecule inhibitors, including Akt, was used to determine signal pathways involving TGase-4 and MDA-7/IL-24.ResultsWe initially noted that MDA-7 resulted in inhibition of cell adhesion, growth and migration of human PCa PC-3 cells which did not express TGase-4. However, after the cells over-expressed TGase-4 by way of transfection, the TGase-4 expressing cells lost their adhesion, growth and migratory inhibitory response to MDA-7. On the other hand, CA-HPV-10 cells, a cell type naturally expressing high levels of TGase-4, had a contrasting response to MDA-7 when compared with PC-3 cells. Inhibitor to Akt reversed the inhibitory effect of MDA-7, only in PC-3 control cells, but not the TGase-4 expressing PC-3 cells. In human prostate tissues, TGase-4 was found to have a good degree of co-localization with one of the MDA-7 receptor complexes, IL-20Ra.ConclusionThe presence of TGase-4 has a biological impact on a prostate cancer cell's response to MDA-7. TGase-4, via mechanism(s) yet to be identified, blocked the action of MDA-7 in prostate cancer cells. This has an important implication when considering the use of MDA-7 as a potential anticancer cytokine in prostate cancer therapies.

Highlights

  • Transglutamiase-4 (TGase-4), known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland

  • TGase-4, via mechanism(s) yet to be identified, blocked the action of MDA-7 in prostate cancer cells. This has an important implication when considering the use of MDA-7 as a potential anticancer cytokine in prostate cancer therapies

  • Over-expression of TGase-4 in prostate cancer cells diminishes the action of MDA-7/IL-24 in prostate cancer cells -Adhesion assays We first created a set of cell sublines to over-express human TGase-4(PC-3TGase4exp), from the prostate cancer cell line, PC-3, whose wild type had little expression of TGase-4

Read more

Summary

Introduction

Transglutamiase-4 (TGase-4), known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland. The functions of this interesting protein are not clearly defined. We have investigated an unexpected link between TGase-4 and the melanoma differentiationassociated gene-7/interleukin-24 (MDA-7/IL-24), a cytokine known to regulate the growth and apoptosis of certain cancer and immune cells. A number of human transglutaminases (TGases), as reviewed [2] have been identified and shown to have relatively restrict distribution patterns. It has been shown that TGase-4 is linked to the invasiveness of prostate cancer cells [12] and participates in the regulation of the interactions between prostate cancer cells and endothelial cells, the later involving the Rock signalling pathway [13]. Variants of TGase-4 have been recently reported in benign and malignant human prostate tissues [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call