Abstract

Previously, we have demonstrated that prostamide/PGF synthase, which catalyzes the reduction of prostaglandin (PG) H2 to PGF2α, is constitutively expressed in myelin sheaths and cultured oligodendrocytes, suggesting that PGF2α has functional significance in myelin-forming oligodendrocytes. To investigate the effects of PGF2α/FP receptor signaling on demyelination, we administrated FP receptor agonist and antagonist to cuprizone-exposed mice, a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, glial activation, proinflammatory cytokine expression, and motor dysfunction. Administration of the FP receptor antagonist AL-8810 attenuated cuprizone-induced demyelination, glial activation, and TNFα expression in the corpus callosum, and also improved the motor function. These data suggest that during cuprizone-induced demyelination, PGF2α/FP receptor signaling contributes to glial activation, neuroinflammation, and demyelination, resulting in motor dysfunction. Thus, FP receptor inhibition may be a useful symptomatic treatment in multiple sclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call