Abstract
Prostaglandin E2 (PGE2) signals differently through 4 receptor subtypes (EP1-EP4) to elicit diverse physiologic/pathologic effects. We previously reported that PGE2 via its EP3 receptor reduces cardiac contractility and male mice with cardiomyocyte-specific deletion of the EP4 receptor (EP4 KO) develop dilated cardiomyopathy. The aim of this study was to identify pathways responsible for this phenotype. We performed ingenuity pathway analysis (IPA) and found that genes differentiating WT mice and EP4 KO mice were significantly overrepresented in mitochondrial (adj. p value = 6.28 × 10−26) and oxidative phosphorylation (adj. p value = 1.58 × 10−27) pathways. Electron microscopy from the EP4 KO hearts show substantial mitochondrial disarray and disordered cristae. Not surprisingly, isolated adult mouse cardiomyocytes (AVM) from these mice have reduced ATP levels compared to their WT littermates and reduced expression of key genes involved in the electron transport chain (ETC) in older mice. Moreover, treatment of AVM from C57Bl/6 mice with PGE2 or the EP3 agonist sulprostone resulted in changes of various genes involved in the ETC, measured by the Mitochondrial Energy Metabolism RT2-profiler assay. Lastly, the EP4 KO mice have reduced expression of superoxide dismuatse-2 (SOD2), whereas treatment of AVM with PGE2 or sulprostone increase superoxide production, suggesting increased oxidative stress levels in these EP4 KO mice. Altogether the current study supports the premise that PGE2 acting via its EP4 receptor is protective, while signaling through its other receptors, likely EP3, is deleterious.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prostaglandins, Leukotrienes and Essential Fatty Acids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.