Abstract

The synthetic glucocorticoid dexamethasone (dex) is a mandatory additive to induce osteogenic differentiation of bone marrow stromal cell (BMSC) in vitro; however it is also known to promote the pathogenesis of osteoporotic bone disease in vivo. In this study human (h)BMSC were cultured in osteogenic medium containing β-glycerophosphate and ascorbate (OM) and in OM containing dex (OM/D). It was seen that dex induced in human (h)BMSC both, osteogenic and adipogenic differentiation markers. Dex reveals its anti-inflammatory effect by reducing endogenous prostaglandin E2 (PGE2) formation and by suppressing the inducible enzymes cyclooxygenase 2 and microsomal PGE2 synthase 1. It was further seen that dex enhanced the expression of prostaglandin receptors, mainly EP2 and EP4 receptor subtypes. We thus hypothesized that dex enforces the susceptibility of hBMSC to respond to exogenous PGE2. Permanent exposure of hBMSC which were cultured in OM/D to PGE2, decreased osteogenic and increased adipogenic differentiation markers. The effects of PGE2 were preferentially mediated by receptor subtypes EP2 and EP4; EP1 was partially involved in pro-adipogenic effects, and EP3 was partially involved in anti-osteogenic effects. These results suggest that dex suppresses the formation of endogenous PGE2 but also enables hBMSC to respond to PGE2 due to the induction of PGE2 receptors EP2 and EP4. PGE2 then shifts in hBMSC the balance from osteogenic to adipogenic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.