Abstract

The elaboration of low-dimensional thermoelectric structures has been shown to allow an increase in the efficiency of thermoelectric materials by the end of the 20th century. The achievements in nanotechnology open up new opportunities in searching for prospective thermoelectric materials and structures. The physical aspects in the creation of low-dimensional thermoelectric structures have been reviewed. The capabilities of developing technologies for the synthesis of thermoelectric structures on the basis of superlattices, quantum wires, and quantum dots have been analyzed. The methods of fabrication and advances in the elaboration of nanocomposite thermoelectric materials have been discussed. The problems in the production of second-generation nanocomposites and their possible solutions have been considered. The methods for diagnosing low-dimensional thermoelectric structures are presented, as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.