Abstract
The possibility of applying silver, cadmium and zinc sulfide nanoparticles (npAg 2 S, npCdS and npZnS) obtained using Shewanella oneidensis MR-1 and Bacillus subtilis 168 bacterial cultures for the creation of a new class of polymeric bionanocomposite materials was investigated. Biogenic nanoparticles obtained in aqueous solutions of the corresponding salts in the presence of various types of microorganisms are characterized by the presence of protein molecules on their surface. The molecules composition is determined by the bacterial culture. Proteins stabilize them and allow the nanoparticles to covalently join the active groups of polymeric carriers. Aminated chloromethylated polystyrene microspheres, as well as ion-exchange resins of various types, were used as polymeric matrices. Analysis of interaction with them can be used as a method for studying the properties of biogenic nanoparticles of metal sulfides for subsequent successful selection of a polymeric carrier. The immobilization of biogenic nanoparticles of metal sulfides onto the surface of aminated chloromethylated polystyrene microspheres was found to depend on the level of stability of aqueous nanoparticle suspensions and is determined by the negative charge of biogenic npAg 2 S, npCdS and npZnS, which suggests covalent binding and the electrostatic interaction of the components in the composition of the polymer bionanocomposite. A comparative analysis of the parameters of nanoparticles depending on the strain used in the biosynthesis was carried out. Analysis of the main physicochemical characteristics of npCdS and npZnS showed that the small size of nanoparticles (npCdS - 5 nm, npZnS - up to 2 nm) and the presence of luminescence peaks at wavelengths less than 400 nm classify them in the blue region of the fluorescence spectrum and identify them as quantum dots. Thus, the possibility of introducing fluorescent quantum dots of nanoparticles of metal sulfides of biogenic origin into various polymeric matrices has been demonstrated, which contributes to the expansion of the horizons for using a new class of nanoparticles to create polymeric bionanocomposites.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.