Abstract

The prospects of a p+nn+ cubic silicon carbide (3C-SiC/β-SiC) based IMPATT diode as a potential solid-state terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate β-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 °C using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p—n junction with an n-type doping concentration of 4 × 1024 m−3 (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call