Abstract
Studies of intrinsic alignment effects mostly focus on the correlations between the shapes of galaxies with each other or with the underlying density field of the large scale structure of the Universe. Lately, the correlation between the shapes of galaxies and the large-scale velocity field has been proposed as an additional probe of the large scale structure. We use a Fisher forecast to make a prediction for the detectability of this velocity-shape correlation with a combination of redshifts and shapes from the $4\mathrm{MOST}+\mathrm{LSST}$ surveys, and radial velocity reconstruction from the Simons Observatory. The signal-to-noise ratio for the velocity-shape (dipole) correlation is 23, relative to 44 for the galaxy density-shape (monopole) correlation and for a maximum wave number of $0.2\text{ }\text{ }\text{Mp}{\mathrm{c}}^{\ensuremath{-}1}$. Increasing the signal-to-noise ratio for higher values of the maximum wave numbers (respectively, 56 and 69, for a maximum wave number of $1\text{ }\text{ }\text{Mp}{\mathrm{c}}^{\ensuremath{-}1}$) indicate potential gains in the nonlinear regime. Encouraged by these predictions, we discuss two possible applications for the velocity-shape correlation. Measuring the velocity-shape correlation could improve the mitigation of selection effects induced by intrinsic alignments on galaxy clustering. We also find that velocity-shape measurements could potentially aid in determining the scale dependence of intrinsic alignments when multiple shape measurements of the same galaxies are provided.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.