Abstract

The rare kaon decays $K\to\pi\nu\bar{\nu}$ are strongly suppressed in the standard model and widely regarded as processes in which new phenomena, not predicted by the standard model, may be observed. Recognizing such new phenomena requires precise standard model prediction for the braching ratio of $K\to\pi\nu\bar{\nu}$ with controlled uncertainty for both short-distance and long-distance contributions. In this work we demonstrate the feasibility of lattice QCD calculation of the long-distance contribution to rare kaon decays with the emphasis on $K^+\to\pi^+\nu\bar{\nu}$. Our methodology covers the calculation of both $W$-$W$ and $Z$-exchange diagrams. We discuss the estimation of the power-law, finite-volume corrections and two methods to consistently combine the long distance contribution determined by the lattice methods outlined here with the short distance parts that can be reliably determined using perturbation theory. It is a subsequent work of our first methodology paper on $K\to\pi\ell^+\ell^-$, where the focus was made on the $\gamma$-exchange diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.