Abstract
Alzheimer's disease (AD) is a debilitating condition that significantly affects the elderly. Early diagnosis is not only critical for improving patient outcomes but also directly influences the success of emerging therapeutic interventions. A therapeutic strategy targeting only one pathogenic mechanism is unlikely to be very effective, as there is increasing evidence that AD does not have a single pathogenic cause. Therefore, combining medications or developing therapies that address multiple pathways may be beneficial. Most clinical trials can be classified under added therapy rather than combination therapy. Effective treatment of AD likely requires targeting multiple mechanisms, such as amyloid-beta (Aβ) and tau pathology. However, many medications face challenges, including poor solubility, low permeability, and the inability to cross the blood- -brain barrier (BBB). This is where nanocarriers come into play, as they can be loaded with these medications to facilitate targeted drug delivery. This approach enhances the pharmacokinetic profile of drugs in both the blood and the brain. Therefore, this paper provides a concise overview of the use of various nanocarriers loaded with drug combinations for treating AD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have