Abstract

Optical lattice clocks combine the accuracy and stability required for next-generation frequency standards. At the heart of these clocks are carefully engineered optical lattices tuned to a wavelength where the differential AC Stark shift between ground and excited states vanishes—the so called ‘magic’ wavelength. To date, only alkaline-earth-like atoms utilizing clock transitions with total electronic angular momentum J=0 have successfully realized these magic wavelength optical lattices at the level necessary for state-of-the-art clock operation. In this article, we discuss two additional types of clock transitions utilizing states with J≠0, leveraging hyperfine structure to satisfy the necessary requirements for controlling lattice-induced light shifts. We propose realizing (i) clock transitions between same-parity clock states with total angular momentum F=0 and (ii) M1/E2 clock transitions between a state with F=0 and a second state with J=1/2, mF=0. We present atomic species which fulfill these requirements before giving a detailed discussion of both manganese and copper, demonstrating how these transitions provide the necessary suppression of fine structure-induced vector and tensor lattice light shifts for clock operations. Such realization of alternative optical lattice clocks promises to provide a rich variety of new atomic species for neutral atom clock operation, with applications from many-body physics to searches for new physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call