Abstract

Purpose. To develop a complex system for technical diagnostics of soil hydrotechnical structures of irrigation systems for operative identification of damaged sites, reduction of nonproduction water losses, and maintaining ecological and economic efficiency of the hydroeconomic national complex in the context of water and food security. Methodology. The result of the represented scientific study is reached by complex application of geophysical methods of the Earth’s natural pulse electromagnetic field (NPEMFE) and vertical electrical sounding (VES). That allows determining qualitative indices and parameters of the damaged sites of hydrotechnical structures and water filtration paths. Mathematical methods for determining quantitative parameters of filtration losses are applied. Analytical and technoeconomic comparison of some most widely used methods with the complex of techniques proposed in the study are performed. Findings. Field studies and analytical calculations helped determine that, depending on the design parameters of retention basins and modes of their operations, water losses are from 50 to 60 m3/month per 1 m of the structure length. In some cases total filtration losses per month can reach up to 100 m3 per 1 m of the length. As for the monetary equivalent, in terms of average water cost being 0.12 EUR/m3, water loss in one standard retention basin with the conventional dimensions of 100  100 m is EUR 2.5 thousand per month (EUR 12.5 thousand per season). Originality. The possibility of using a complex of geophysical methods for diagnosing technical conditions of soil dams of retention agricultural basins has been substantiated scientifically. The complex is of high informativity making it possible to determine rapidly the sites with increased filtration in the hydrotechnical objects. According to the comparison of the available models for evaluating possible filtration losses from the retention basins of irrigation systems, the parameters of estimate indicators, ensuring high reliability of the results, have been substantiated. Practical value. Point determination of the sites with filtration water losses makes it possible to focus the repair and renewal operations on the most damaged sites that reduce considerably the time and costs along with the increase in general efficiency of the irrigation system operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.