Abstract
IntroductionA kV imager coupled to a novel, ring-gantry radiotherapy system offers improved on-board kV-cone-beam computed tomography (CBCT) acquisition time (17–40 seconds) and image quality, which may improve CT radiotherapy image-guidance and enable online adaptive radiotherapy. We evaluated whether inter-observer contour variability over various anatomic structures was non-inferior using a novel ring gantry kV-CBCT (RG-CBCT) imager as compared to diagnostic-quality simulation CT (simCT). Materials/methodsSeven patients undergoing radiotherapy were imaged with the RG-CBCT system at breath hold (BH) and/or free breathing (FB) for various disease sites on a prospective imaging study. Anatomy was independently contoured by seven radiation oncologists on: 1. SimCT 2. Standard C-arm kV-CBCT (CA-CBCT), and 3. Novel RG-CBCT at FB and BH. Inter-observer contour variability was evaluated by computing simultaneous truth and performance level estimation (STAPLE) consensus contours, then computing average symmetric surface distance (ASSD) and Dice similarity coefficient (DSC) between individual raters and consensus contours for comparison across image types. ResultsAcross 7 patients, 18 organs-at-risk (OARs) were evaluated on 27 image sets. Both BH and FB RG-CBCT were non-inferior to simCT for inter-observer delineation variability across all OARs and patients by ASSD analysis (p < 0.001), whereas CA-CBCT was not (p = 0.923). RG-CBCT (FB and BH) also remained non-inferior for abdomen and breast subsites compared to simCT on ASSD analysis (p < 0.025). On DSC comparison, neither RG-CBCT nor CA-CBCT were non-inferior to simCT for all sites (p > 0.025). ConclusionsInter-observer ability to delineate OARs using novel RG-CBCT images was non-inferior to simCT by the ASSD criterion but not DSC criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.