Abstract

Purpose/objectivePrecise delineation of organs at risk (OARs) in head and neck cancer (HNC) is necessary for accurate radiotherapy. Although guidelines exist, significant interobserver variability (IOV) remains. The aim was to validate a 3D convolutional neural network (CNN) for semi-automated delineation of OARs with respect to delineation accuracy, efficiency and consistency compared to manual delineation. Material/methods16 OARs were manually delineated in 15 new HNC patients by two trained radiation oncologists (RO) independently, using international consensus guidelines. OARs were also automatically delineated by applying the CNN and corrected as needed by both ROs separately. Both delineations were performed two weeks apart and blinded to each other. IOV between both ROs was quantified using Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD). To objectify network accuracy, differences between automated and corrected delineations were calculated using the same similarity measures. ResultsAverage correction time of the automated delineation was 33% shorter than manual delineation (23 vs 34 minutes) (p < 10–6). IOV improved significantly with network initialisation for nearly all OARs (p < 0.05), resulting in decreased ASSD averaged over all OARs from 1.9 to 1.2 mm. The network achieved an accuracy of 90% and 84% DSC averaged over all OARs for RO1 and RO2 respectively, with an ASSD of 0.7 and 1.5 mm, which was in 93% and 73% of the cases lower than the IOV. ConclusionThe CNN developed for automated OAR delineation in HNC was shown to be more efficient and consistent compared to manual delineation, which justify its implementation in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call