Abstract

The goal of this study was to provide a holistic, reliable, and transparent comparison of battery electric vehicles (BEVs) and fuel cell electric vehicles (FCVs) regarding their environmental impacts (EI) and costs over their whole life cycle. The comprehensive knowledge about EI and costs forms the basis on which to decide which technology should be favored for the future of mobility. Therefore, a holistic and transparent comparative life cycle assessment (LCA), using the ReCiPe 2016 method, and a life cycle costing were conducted. Special attention was paid to the fuel supply infrastructure for BEV and FCV as these have not been sufficiently considered in previous research. The required infrastructure was calculated for six million electric vehicles (EVs) and the EI and costs were allocated proportional on the functional unit of 1 km driven with an EV. Different scenarios regarding electricity mix, range of the BEV, and vehicle lifetime were calculated. In order to ensure transparency, all inventories and calculations were published in the attached Electronic supplementary material (ESM). Detailed results were presented for the impact categories global warming potential (GWP), human toxicity potential non-carcinogenic (HTPnc), surplus ore potential (SOP), and particulate matter formation potential (PMFP). Aggregated results for all midpoint impact categories of the ReCiPe method can be found in the ESM. It was shown that BEVs achieve lower EI than FCVs in most impact categories (e.g., GWP: BEV: 1.40E-01, FCV: 1.68E-01 kg CO2-eq./km) and that the total costs of ownership are as well lower for BEVs (68,900 € vs. 130,100 €). Further, it was found that the fuel supply infrastructure—without electricity supply—contributes a considerable amount to the overall impact per kilometer driven (e.g., 3.7% and 3.3% of the GWP for BEV and FCV, respectively). Considering mid-size vehicles like the VW e-Golf, it was concluded that BEVs have today a better environmental and financial performance than FCVs. However, the range of the BEV is lower than the range of the FCV (200 vs. 530 km) and both technologies have different stages of maturity. Moreover, the study showed that the fuel supply infrastructure is an important contributor to the overall life cycle impacts and that it is therefore indispensable to include the infrastructure in LCA of electric vehicles. Based on the results, recommendations to utilize the advantage of both BEV (high energy efficiency, lower costs) and FCV (long-distance capability) were made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call