Abstract

Volumetric turbo spin echo (3D-TSE) T1-weighted imaging techniques such as T1-SPACE (Sampling Perfection with Application optimized Contrasts by using different flip angle Evolutions) improve detection of intracranial metastases (IM) compared to volumetric magnetisation-prepared gradient recalled echo techniques such as MPRAGE (Magnetization-Prepared Rapid Acquisition with Gradient Echo). However, incomplete vascular suppression can produce false positives when using 3D-TSE. Research into 3D-TSE has generally targeted patients with known or suspected IM, but the clinical implications of false positives are greater in patients with lower likelihood of IM. This study examined additional findings identified by T1-SPACE in patients with metastatic melanoma, targeting patients with a lower incidence of IM. Patients with metastatic melanoma and an upcoming brain MRI booking were identified prospectively. Consent for adding post-contrast T1-SPACE to the MRI protocol (which included MPRAGE) was obtained. Imaging was initially assessed without T1-SPACE. Subsequently, T1-SPACE images were examined and additional findings identified were recorded, including their correlation with MPRAGE. One hundred examinations were performed, 24 having evidence of active IM. T1-SPACE allowed identification of additional lesions in five patients, including two with small solitary IM not identified when first assessing MPRAGE. In 18 examinations, T1-SPACE identified additional equivocal findings, confidently attributed to artefact (most commonly normal vessels) following correlation with MPRAGE. T1-SPACE improves detection of small lesions in patients without known IM, changing patient management. False positives are common but can be clarified with MPRAGE. Combining T1-SPACE and MPRAGE allows both sensitivity and specificity to be optimised.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call