Abstract
BACKGROUND. Cine cardiac MRI sequences require repeated breath-holds, which can be difficult for patients with ischemic heart disease (IHD). OBJECTIVE. The purpose of the study was to compare a free-breathing accelerated cine sequence using deep learning (DL) reconstruction and a standard breath-hold cine sequence in terms of image quality and left ventricular (LV) measurements in patients with IHD undergoing cardiac MRI. METHODS. This prospective study included patients undergoing 1.5- or 3-T cardiac MRI for evaluation of IHD between March 15, 2023, and June 21, 2023. Examinations included an investigational free-breathing cine short-axis sequence with DL reconstruction (hereafter, cine-DL sequence). Two radiologists (reader 1 [R1] and reader 2 [R2]), in blinded fashion, independently assessed left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and subjective image quality for the cine-DL sequence and a standard breath-hold balanced SSFP sequence; R1 assessed artifacts. RESULTS. The analysis included 26 patients (mean age, 64.3 ± 11.7 [SD] years; 14 men, 12 women). Acquisition was shorter for the cine-DL sequence than the standard sequence (mean ± SD, 0.6 ± 0.1 vs 2.4 ± 0.6 minutes; p < .001). The cine-DL sequence, in comparison with the standard sequence, showed no significant difference for LVEF for R1 (mean ± SD, 51.7% ± 14.3% vs 51.3% ± 14.7%; p = .56) or R2 (53.4% ± 14.9% vs 52.8% ± 14.6%; p = .53); significantly greater LVEDV for R2 (mean ± SD, 171.9 ± 51.9 vs 160.6 ± 49.4 mL; p = .01) but not R1 (171.8 ± 53.7 vs 165.5 ± 52.4 mL; p = .16); and no significant difference in LVESV for R1 (mean ± SD, 88.1 ± 49.3 vs 86.0 ± 50.5 mL; p = .45) or R2 (85.2 ± 48.1 vs 81.3 ± 48.2 mL; p = .10). The mean bias between the cine-DL and standard sequences by LV measurement was as follows: LVEF, 0.4% for R1 and 0.7% for R2; LVEDV, 6.3 mL for R1 and 11.3 mL for R2; and LVESV, 2.1 mL for R1 and 3.9 mL for R2. Subjective image quality was better for cine-DL sequence than the standard sequence for R1 (mean ± SD, 2.3 ± 0.5 vs 1.9 ± 0.8; p = .02) and R2 (2.2 ± 0.4 vs 1.9 ± 0.7; p = .02). R1 reported no significant difference between the cine-DL and standard sequences for off-resonance artifacts (3.8% vs 23.1% examinations; p = .10) and parallel imaging artifacts (3.8% vs 19.2%; p = .19); blurring artifacts were more frequent for the cine-DL sequence than the standard sequence (42.3% vs 7.7% examinations; p = .008). CONCLUSION. A free-breathing cine-DL sequence, in comparison with a standard breath-hold cine sequence, showed very small bias for LVEF measurements and better subjective quality. The cine-DL sequence yielded greater LV volumes than the standard sequence. CLINICAL IMPACT. A free-breathing cine-DL sequence may yield reliable LVEF measurements in patients with IHD unable to repeatedly breath-hold. TRIAL REGISTRATION. ClinicalTrials.gov NCT05105984.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have