Abstract

Two-dimensional (2D) van der Waals magnets have drawn considerable attention in recent years triggered by the huge interest in novel magnetism and spintronic devices. Magnetic measurement of 2D van der Waals (vdW) magnets is crucial to understand the physical origin of magnetism in 2D limits. Therefore, advanced magnetic characterization techniques are highly required. However, only a limited number of such techniques are available due to the extremely small volume of 2D vdW magnets. Here, we introduce the electron magnetic chiral dichroism (EMCD) technique in transmission electron microscope (TEM) to measure 2D vdW crystals. In comparison with some other already-employed techniques in 2D magnets, EMCD is able to quantitatively measure magnetic parameters in three orthogonal directions at nanometer or even at atomic scale. We then perform EMCD simulations on several typical 2D vdW magnets with respect to the accelerating voltage, the number of atomic layers and beam tilt under zone axial orientation. The intensity and distribution of EMCD signals in three orthogonal directions are given in the diffraction plane, thereby providing an optimized design to achieve EMCD measurements. Finally, we discuss the signal-to-noise-ratio and required electron dose in order to obtain a measurable EMCD signal for 2D vdW magnets. Our results provide a feasibility analysis and guideline to measure 2D vdW magnets in future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.