Abstract
Scanning tunneling microscope (STM) is a renowned scientific tool for obtaining high-resolution atomic images of materials. Herein, we present an innovative design of the scanning unit with a compact yet powerful inertial piezoelectric motor inspired by the Spider Drive motor principle. The scanning unit mainly consists of a small 9 mm long piezoelectric tube scanner (PTS), one end of which is coaxially connected to the main sapphire body of the STM. Of particular emphasis in this design is the piezoelectric shaft (PS), constructed from piezoelectric material instead of conventional metallic or zirconium materials. The PS is a rectangular piezoelectric stack composed of two piezoelectric plates, which are elastically clamped on the inner wall of the PTS via a spring strip. The PTS and PS expand and contract independently with each other to improve the inertial force and reduce the threshold voltage. To ensure the stability of the PS and balance the stepping performance of the inertial motor, a counterweight, and a matching conical spring are fixed at the tail of the PS. This innovative design allows for the assessment of scanning unit performance by applying a driving signal, threshold voltage is 50 V at room temperature. Step sizes vary from 0.1 to 1 µm by changing the driving signal at room temperature. Furthermore, we successfully obtained atomic-resolution images of a highly oriented pyrolytic graphite (HOPG) sample and low drift rates of 23.4 pm/min and 34.6 pm/min in X-Y plane and Z direction, respectively, under ambient conditions. This small, compact STM unit has the potential for the development of a rotatable STM for use in cryogen-free magnets, and superconducting magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.