Abstract

AbstractIt is envisaged that future civil aero-engines will operate with ultra-high bypass ratios to reduce the specific fuel consumption. To achieve the expected benefits from the new engine cycles, these new powerplants may mount compact nacelles. For these new configurations the aerodynamic coupling between the powerplant and the airframe may increase. For this reason, it is required to quantify and further understand the effects of aircraft integration for compact aero-engine nacelles. This study provides an insight of the changes in flow aerodynamics as well as quantification of the most relevant performance metrics of the powerplant, airframe and the combined aircraft system across a range of different installation positions. Relative to a conventional architecture, there is an aerodynamic benefit in net vehicle force of about 1.2% for a compact powerplant when installed in forward positions. This is the same improvement that was identified when the aero-engine nacelles were in isolation. However, for close-coupled installation positions, the aerodynamic benefit in net vehicle force erodes to 0.44% due to the larger effects of aircraft integration on compact nacelles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.