Abstract

Our brain integrates information from multiple modalities in the control of behavior. When information from one sensory source is compromised, information from another source can compensate for the loss. What is not clear is whether the nature of this multisensory integration and the re-weighting of different sources of sensory information are the same across different control systems. Here, we investigated whether proprioceptive distance information (position sense of body parts) can compensate for the loss of visual distance cues that support size constancy in perception (mediated by the ventral visual stream) [1, 2] versus size constancy in grasping (mediated by the dorsal visual stream) [3-6], in which the real-world size of an object is computed despite changes in viewing distance. We found that there was perfect size constancy in both perception and grasping in a full-viewing condition (lights on, binocular viewing) and that size constancy in both tasks was dramatically disrupted in the restricted-viewing condition (lights off; monocular viewing of the same but luminescent object through a 1-mm pinhole). Importantly, in the restricted-viewing condition, proprioceptive cues about viewing distance originating from the non-grasping limb (experiment 1) or the inclination of the torso and/or the elbow angle of the grasping limb (experiment 2) compensated for the loss of visual distance cues to enable a complete restoration of size constancy in grasping but only a modest improvement of size constancy in perception. This suggests that the weighting of different sources of sensory information varies as a function of the control system being used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call