Abstract

ABSTRACT Wire Arc Additive Manufacturing (WAAM) is a metallic additive manufacturing process based on the fusion of metallic wires using an electric arc as a heat source. The challenge associated with WAAM is heat management and understanding bead geometry. All of the process variables, such as travel speed (TS), wire feed speed (WFS), idle time, combine to produce the geometry of the deposited bead that results in the desired component shape. Therefore, determining a method for selecting a good combination of process parameters is critical to obtain a high-quality part. This article presents a study on how to control the WAAM process to produce a thick part of aluminium alloys. An experimental design is determined to study the influence between various process parameters such as WFS, TS, the layer height, or the length of the bead. Different samples are made using a Yaskawa robot, and the classic CMT (Cold Metal Transfer) mode as a manufacturing method. A new manufacturing method is then proposed by adding an important step in the process parameters determination. The results indicate that the length of the bead has a significant impact on the torch speed of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call