Abstract

The development of oxygen evolution reaction (OER) catalysts with high activity and controllability is crucial for clean energy conversion and storage but remains a challenge. Here, based on first-principles calculations, we propose to utilize spin crossover (SCO) in two-dimensional (2D) metal-organic frameworks (MOFs) to achieve reversible control of OER catalytic activity. The theoretical design of a 2D square lattice MOF with Co as nodes and tetrakis-substituted cyanimino squaric acid (TCSA) as ligands, which transforms between the high spin (HS) and the low spin (LS) state by applying an external strain (∼2%), confirms our proposal. In particular, the HS-LS spin state transition of Co(TCSA) considerably regulates the adsorption strength of the key intermediate HO* in the OER process, resulting in a significant reduction of the overpotential from 0.62 V in the HS state to 0.32 V in the LS state, thus realizing a reversible switch for the activity of the OER. Moreover, the high activity of the LS state is confirmed by microkinetic and constant potential method simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.