Abstract

Flexible-SERS (FSERS) substrates were fabricated by depositing Ni64Al36(NiAl)-alloy-microparticles and/or spherical Ag-NPs (sizes of 10-40 nm) on recycled plastics, which had an aluminum layer on their surface. First, FSERS substrates made of Al + Ag-NPs and an area of 1 cm2 were used to detect rhodamine B (RhB) molecules. The limit-of-detection (LOD) for RhB was 8.35 × 10-22 moles (∼503 molecules), and the enhancement factor (EF) was 3.11 × 1015. After adding NiAl-microparticles to the substrate, the LOD decreased to 8.35 × 10-24 moles (∼5 molecules) and the EF was increased to 2.05 × 1017. Such EF values were calculated with respect to substrates made only with Al + NiAl-alloy (without Ag-NPs), which did not show any Raman signal. Other FSERS substrates were made with graphene-layer + Ag-NPs or graphene-layer + NiAl-alloy + Ag-Nps, and the best LOD and EF values were 8.35 × 10-22 moles and 6.89 × 1015, respectively. Overall, combining the Ag-NPs and NiAl-alloy microparticles allowed for the zeptomole detection of RhB. This was possible due to the formation of Ag aggregates around the alloy microparticles, which enhanced the number of hotspots. If no alloy is present in the FSERS substrates, the detection of RhB is lowered. Overall, we presented a low-cost FSERS substrate that does not require expensive Au films or Au-NPs (as previously reported) to detect RhB at the zeptomole level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.