Abstract

In research field of alternative solutions to internal combustion engine vehicles, the Politecnico di Milano has developed a design and manufacturing project for an adaptable electro-mechanical kit intended to transform a city car with endothermic propulsion into a bimodal one, using existent technologies and innovative solutions. This project involves mechanical and electrical competences in order to develop a new transmission parallel to the current endothermic propulsion and its control system. This paper describes, in general, the developed procedure to obtain the final prototype. At first, the requirements and constraints to fulfil a standard transport urban cycle has been established and the vehicle to modify was selected, in this case the Fiat Grande Punto. Next, new components and the required space to their installation have been identified and specified, whilst mechanical components were designed and manufactured. Instruments of reverse engineering and virtual prototyping have been employed to carry out the geometrical models, simulations and layouts and to identify useful spaces in the vehicle. Finally, general modifications, installation of new components, implementation of control and data acquisition system, fine-tuning and check of specifications fulfilment have been carried out. A 30 km range working in electrical mode, with a top speed of 70 km/h, is assured with the developed kit. These results demonstrate the feasibility to implement a forward bimodal propulsion system into a commercial city car with a little invasive commercial kit, and now, the Politecnico is working at its industrialization and implementation to different models of city cars. Regione Lombardia (Regional government in Italy) has funded this project as an investigation oriented to find new solutions to sustainable transport and reduction of environmental pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.