Abstract

This paper presents a new design for a superconducting linear motor (SLM). This SLM uses stacks of second-generation (2G) superconducting tapes, which are responsible for replacing yttrium barium copper oxide bulks. The proposed SLM may operate as a synchronous motor or as a hysteresis motor, depending on the load force magnitude. A small-scale linear machine prototype with 2G stacks was constructed and tested to investigate the proposed SLM topology. The stator traveling magnetic field wave was represented by several Nd-Fe-B permanent magnets. A relative movement was produced between the stator and the stack, and the force was measured along the displacement. This system was also simulated by the finite element method, in order to calculate the induced currents in the stack and determine the electromagnetic force. The H-formulation was used to solve the problem, and a power law relation was applied to take into account the intrinsically nonlinearity of the superconductor. The simulated and measured results were in accordance. Simulated results were extrapolated, proving to be an interesting tool to scale up the motor in future projects. The proposed motor presented an estimated force density of almost 500 N/kg, which is much higher than any linear motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.