Abstract

I propose a method for ultrafast switching of ferroelectric polarization using mid-infrared pulses. This involves selectively exciting the highest frequency $A_1$ phonon mode of a ferroelectric material with an intense mid-infrared pulse. Large amplitude oscillations of this mode provides a unidirectional force to the lattice such that it displaces along the lowest frequency $A_1$ phonon mode coordinate because of a nonlinear coupling of the type $g Q_{\textrm{P}} Q_{\textrm{IR}}^2$ between the two modes. First principles calculations show that this coupling is large in transition-metal oxide ferroelectrics, and the sign of the coupling is such that the lattice displaces in the switching direction. Furthermore, I find that the lowest frequency $A_1$ mode has a large $Q_{\textrm{P}}^3$ order anharmonicity, which causes a discontinuous switch of electric polarization as the pump amplitude is continuously increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.