Abstract
Intense mid-infrared pulses tunable between 5 and 14 µm with pulse energies of several microjoules were generated by difference-frequency mixing (DFM) in a GaSe crystal. Longer wavelengths (up to 18 µm) were achieved by DFM in a CdSe crystal. The infrared pulses were then characterized using various techniques: The spectrum was measured using a Fourier-transform spectrometer, which was then modified to determine the interferometric second-order autocorrelation. The electric field spectral phase was measured using the same setup, thus leading to a full characterization of the mid-infrared pulses. The spectral phase was measured using the time-domain homodyne optical technique for spectral phase interferometry for direct electric field reconstruction, where spectral interferometry was replaced with time-domain interferometry. The measured pulse duration was 100 fs, nearly transform limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.