Abstract

The primary aim of a rain radar is to observe ground-level rainfall accurately. Effective quality control of rain radar data is necessary to ensure accuracy. In the field of hydrology, various methods have been employed to improve the quality of radar rainfall by correcting or synthesizing it with gauge rainfall. However, it is more important to enhance the quality of radar polarimetric variables in order to improve the quality of radar rainfall. Rain radar systems generate various polarimetric variables through complex radar hardware systems and signal processing algorithms. Measurement errors may arise from equipment abnormalities, inappropriate operating settings, and obstructions in observation during signal processing algorithms and production process of polarimetric variables. Because rain radar is an observation device operating in real time, it entails more frequent and continuous quality control compared to flowmeters that intermittently measure streamflow. This study introduces a series of real-time quality control methods tailored for rain radar, including inspection of radar rainfall accuracy, quality analysis of polarimetric variables (ρ<sub>HV</sub>, Z<sub>DR</sub>, Φ<sub>DP</sub>), error estimation of polarimetric variables, and long-term variability of errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call