Abstract
In this study, the improvement of the compressive strength and duradbility of concrete used in marine railways by adding binding agents was investigated. The test speciments used in the study comprised developed product A (DP_A), developed product B (DP_B), Ordinary Portland Cement (OPC), admixture A, and admixture B, in the study, the optimum ternary binder systems of the test specimens were identified. An optimum ternary binder system would facilitate the simultaneous enhancement of the durability and workability of concrete used on undersea tunnel linings and bridge structures. The compressive strength of each specimen tested after 16h could easily meet the specified standard target strength (> 3.0_MPa). Moreover, the 7d long term strength of each test specimen exceeded 3.0 MPa. When binders were used, the chloride penetration resistance (DP_A was exceptional)_2.741C (normal) and, 1.490C (low) following-28 and 91days. The surface diffustion coefficient of (DP_B) at 91days 9.12 (× 10-12, m<sup>2</sup>/sec) was higher than that of OPC 9.55 (× 10-12, m<sup>2</sup>/sec). However, the surface diffusion coefficient of (DP_A) was 4.15 (× 10-12, m<sup>2</sup>/sec) which was lower than OPC by approximately 57%, indicating the outstanding durability of DP_A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Hazard Mitigation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.