Abstract

This paper investigates the energy-efficient radio resource allocation problem of the uplink smallcell networks. Different from the existing literatures which focus on improving the energy efficiency (EE) or providing fairness measured by data rates, this paper aims to provide fairness guarantee in terms of EE and achieve EE-based proportional fairness among all users in smallcell networks. Specifically, EE-based global proportional fairness utility optimization problem is formulated, taking into account each user's quality of service, and the cross-tier interference limitation to ensure the macrocell transmission. Instead of dealing with the problem in forms of sum of logarithms directly, the problem is transformed into a form of sum of ratios firstly. Then, a two-step scheme which solves the subchannel and power allocation separately is adopted, and the corresponding subchannel allocation algorithm and power allocation algorithm are devised, respectively. The subchannel allocation algorithm is heuristic, but can achieve close-to-optimal performance with much lower complexity. The power allocation scheme is optimal, and is derived based on a novel method which can solve the sum of ratios problems efficiently. Numerical results verify the effectiveness of the proposed algorithms, especially the capability of EE fairness provisioning. Specifically, it is suggested that the proposed algorithms can improve the fairness level among smallcell users by 150---400 % compared to the existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.