Abstract

This paper deals with the objective of controlling a satellite by driving a six-state discrete Kalman Filter to estimate angular rates of satellite base on control sensor noisy data. A typical satellite is assumed in a special orbit and orbital angular velocity and orbital angular acceleration are established. For completion of simulation linear dynamics model of satellites and environment disturbances model such as solar pressure and gravity gradient torque is derived as well. The simulation is progressed at discrete ten second which assumed as data updating rate from sensor. The noisy measurements are produced by sensor and these data is sent to the discrete Kalman Filter part to estimate the attitude and attitude rate. A right balance for Plant noise covariance matrix is determined and also results show that the rate estimates are appropriate for space missions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call