Abstract

Postoperative fatigue (POF) is the most common and long-lasting complication after surgery, which brings heavy burden to individuals and society. Recently, hastening postoperative recovery receives increasing attention, but unfortunately, the mechanisms underlying POF remain unclear. Propofol is a wildly used general anesthetic in clinic, and inspired by the rapid antidepressant effects induced by ketamine at non-anesthetic dose, the present study was undertaken to investigate the anti-fatigue effects and underlying mechanisms of propofol at a non-anesthetic dose in 70% hepatectomy induced POF model in rats. We first showed here that single administration of propofol at 0.1 mg/kg ameliorated acute POF in hepatectomy induced POF rats. Based on metabonomics analysis, we hypothesized that propofol exerted anti-fatigue activity in POF rats by facilitating free fatty acid (FFA) oxidation and gluconeogenesis. We further confirmed that propofol restored the deficit in FFA oxidation and gluconeogenesis in POF rats, as evidenced by the elevated FFA utilization, acetyl coenzyme A content, pyruvic acid content, phosphoenolpyruvic acid content, hepatic glucose output and glycogen storage. Moreover, propofol stimulated glucagon secretion and up-regulated expression of cAMP-response element binding protein (CREB), phosphorylated CREB, peroxlsome prolifeator-activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinade1 and carnitine palmitoltransferase 1A. In summary, our study suggests for the first time that propofol ameliorates acute POF by promoting glucagon-regulated gluconeogenesis via CREB/PGC-1α signaling and accelerating FFA beta-oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.