Abstract

Systemic vascular resistance incompletely describes left ventricular afterload because of the phasic nature of arterial pressure and blood flow. Aortic input impedance is an experimental description of left ventricular afterload that incorporates the frequency- dependent characteristics and viscoelastic properties of the arterial system. The effects of propofol on aortic input impedance were examined using three variables derived from the three-element Windkessel model: characteristic aortic impedance, total arterial compliance, and total arterial resistance. Eight dogs were chronically instrumented for measurement of aortic pressure, left ventricular pressure, +dP/dt, subendocardial segment length, and aortic blood flow. Systemic hemodynamics and aortic blood pressure and flow waveforms were recorded in the conscious state and after a bolus of 5 mg x kg(-1) propofol and infusion for 15 min at 25, 50 and 100 mg x kg(-1) x h(-1). Aortic input impedance spectra were generated using power spectral analysis of aortic pressure and flow waveforms corrected for the phase responses of the pressure and flow transducers. Characteristic aortic impedance, total arterial resistance, and total arterial compliance were calculated from the aortic input impedance spectrum and the aortic pressure waveform. Parameters describing the net site and magnitude or arterial wave reflection were determined from aortic impedance. Propofol decreased total arterial resistance (3.05 +/- 0.20 during control to 2.29 +/- 0.18 dynes x s x cm(-5) x 10(3) at the high dose) and increased total arterial compliance (0.53 +/- 0.04 during control to 1.15 +/- 0.17 ml x mmHg(-1) at the high dose) in a dose- related manner. Propofol increased characteristic aortic impedance (1.49 +/- 0.15 during control to 2.20 +/- 0.20 dynes x s x cm(-5) x 10(2) at the high dose). The net site and the magnitude of arterial wave reflection were unchanged by the propofol. In chronically instrumented dogs, propofol decreased total arterial resistance, a property of arteriolar resistance vessels, consistent with the known actions of this drug on systemic vascular resistance. Propofol also increased total arterial compliance and characteristic aortic impedance, indicating that this anesthetic affects the mechanical properties of the aorta. Propofol had no effect on arterial wave reflection patterns. The results indicate that propofol reduces left ventricular afterload via decreases in peripheral resistance and increases in arterial compliance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call