Abstract

Short-chain fatty acids (SCFAs) are the major solutes and the major anions in the colonic lumen. We studied the response of suspended HT29-18-C1 cells (an epithelial cell line derived from a human colon carcinoma) to SCFA exposure. Cellular response was evaluated by measurement of cell volume (Coulter counter), intracellular pH [pHi; measured fluorometrically with 2',7'-bis(2-carboxyethyl)-5-(6)-carboxyfluorescein (BCECF)], and intracellular Na+, K+, and Cl- content (flame photometry and chloride titrator). Exposure to 130 mM propionate in isosmotic medium causes a rapid decrease in pHi and activates pHi recovery via amiloride-sensitive Na-H exchange. In the presence of propionate, Na-H exchange also causes cell swelling to a peak volume 11% above control cells and causes a 2.8-fold increase in intracellular Na+ content. After peak swelling, a regulatory-volume decrease (RVD) significantly reduced volume and intracellular Na+ returned to baseline. Other SCFAs (acetate, butyrate, and valerate) also elicit swelling and RVD. Activation of the Na(+)-K(+)-adenosinetriphosphatase (ATPase) is required to return Na+ to normal levels and to indirectly provide ion gradients required for propionate-induced RVD, but Na(+)-K(+)-ATPase activity does not directly mediate RVD. When 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) is added in the presence of propionate, RVD was inhibited and cell Na+ content increased. Cl- depletion inhibited propionate-induced RVD and diminished the effect of SITS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call