Abstract

Regulatory volume decrease (RVD) in detached cerebellar astrocytes in culture after acute exposure to hyposmolarity was characterized in this and the accompanying paper [H. Pasantes-Morales, R. A. Murray, R. Sanches-Olea, and J. Moran. Am. J. Physiol. 266 (Cell Physiol. 35): C172-C178, 1994]. RVD was independent of extracellular calcium, was accelerated at pH 8-9 and retarded at pH 6, and was reduced at temperatures < 18 degrees C. The cationic pathway activated by hyposmolarity was specific for K+ and Rb+, since RVD was abolished and secondary swelling occurred when these ions replaced Na+. However, Li+, choline, tris(hydroxymethyl)aminomethane, and glucosamine, all as Cl- salts, did not affect RVD. The anion pathway was unselective, since RVD was inhibited when NaCl was replaced by anion K+ salts with a permeability rank of SCN- = I- > NO3- > Cl- > benzoate > acetate >> SO3- > gluconate. RVD was unaffected by bumetanide (50 microM) and weakly inhibited by furosemide (2 mM). Quinidine but not other K+ channel blockers inhibited RVD, and its effect was reversed by gramicidin. RVD was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and dipyridamole but not by diphenylamine-2-carboxylate or anthracene-9-carboxylate. These results suggest that diffusion possibly via channels rather than cotransporters is involved in the swelling-activated K+ and Cl- fluxes. Gramicidin did not change astrocyte volume in isosmotic conditions, but greatly accelerated RVD, suggesting that low Cl- permeability in isosmotic conditions markedly increases by swelling, thus making K+ permeability the rate-limiting step for RVD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.