Abstract

Einstein's general relativity theory includes the gravitational wave as a key prediction. One of the most crucial areas of contemporary physics is gravitational wave detection. A fantastic addition to conventional electromagnetic radiation astronomy, gravitational wave astronomy is a brand-new field of study based on the discovery of gravitational waves. In this paper, the prediction and characteristics of gravitational waves are discussed, and the detection methods of gravitational waves are given, such as the limitations of the resonant rod of gravitational waves, the working principle and basic structure of the gravitational wave probe, the laser interferometer. The gravitational wave signal of the binary black hole merger detected by the LIGO laser interferometer gravitational wave detector in the United States for the first time on September 14, 2015, which opens a new "gravitational wave window" for human astronomy research. It is foreseeable that in the near future gravitational wave research will explore the unknown information of the universe from various gravitational wave frequency bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call