Abstract
Prophages are prevalent among bacterial species, including strains carrying antibiotic resistance genes (ARGs). Prophage induction can be triggered by the SOS response to stressors, leading to cell lysis. In environments polluted by chemical stressors, ARGs and prophage co-harboring strains might pose an unknown risk of spreading ARGs through chemical pollutant-mediated prophage induction and subsequent cell lysis. In this study, we investigated the effects of common non-antibiotic water pollutants, triclosan and silver nanoparticles, on triggering prophage induction in clinical isolates carrying ARGs and the subsequent uptake of released ARGs by the naturally competent bacterium Acinetobacter baylyi. Our results demonstrate that both triclosan and silver nanoparticles, at environmentally relevant concentrations and those found in commercial products, significantly enhance prophage induction among various clinical isolates. Transmission electron microscopy imaging and plaque assays confirmed the production of infectious phage particles under non-antibiotic pollutants-mediated prophage induction. In addition, the rate of ARG transformation to A. baylyi significantly increased after the release of extracellular ARGs from prophage induction-mediated cell lysis. The mechanism of non-antibiotic pollutants-mediated prophage induction is primarily associated with excessive oxidative stress, which provokes the SOS response. Our findings offer insights into the role of non-antibiotic pollutants in promoting the dissemination of ARGs by triggering prophage induction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have