Abstract
In this study, consolidated WC-Fe compacts as a function of Fe contents were fabricated by a spark plasma sintering method, following the mixed by the ball-milled powder. Fe among the metallic binders was added to WC enhance not only the driving force of sintering process but also suppressing the grain growth. WC-Fe mixed powder samples were fabricated with 5, 10 and 15 wt.% Fe contents, and the particle sizes of the mixed powders were determined to be 2.15 to 3.15 µm, respectively. The WC-Fe mixed powders were processed by spark plasma sintering, at a sintering temperature of 1300 oC. Consequently, the relative densities of the WC-5, 10 and 15 wt.% Fe sintered-bodies were about 99.2, 99.5 and 100%, respectively. The grain sizes of the WC-5, 10 and 15 wt.% Fe sintered-bodies were about 0.92, 0.98 and 1.02 µm, respectively. The Fe particles penetrated into the WC particles by dissolving and re-precipitation, and the final sintered bodies were completely densified. The mechanical properties of the WC-Fe sintered-bodies exhibited a hardness up to 1934 kg·mm2 and a fracture toughness above 6.88 MPa·m1/2. The microstructure behavior of the WC-Fe sintered-bodies was investigated in terms of mechanical properties to examine their properties for various Fe contents. In addition, the mechanical and physical properties were compared with the reported values for other sintering-processes, i.e. HFIHS, HIP, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.