Abstract
In this study, fully dense β-SiAlON/TiN composites were produced by Spark Plasma Sintering (SPS) method. Si3N4, Al2O3, AlN and TiO2 powders were used as precursors. Starting powders were mixed with high energy ball milling and then were sintered by SPS method (at 1750°C under pressure of 30MPa for 12min.). The milled powders had an average particle size of below ~155nm. The XRD patterns of SPS-ed composites showed that the entire β-SiAlON phase constituent was in the form of Si4Al2O2N6 phase and cubic TiN phase can be formed by the phase transformation of TiO2 in relation with other precursors. FESEM micrographs confirmed that TiN particles were distributed homogeneously throughout β-SiAlON matrix. Mechanical properties evaluation revealed that by adding micro sized TiO2, optimal mechanical properties with a hardness ~14.6GPa and a fracture toughness ~6.3MPam1/2 were obtained. The improvement in the fracture toughness was attributed to the presence of the crack deflection as the dominant toughening mechanism in the SPS-ed β–SiAlON/TiN composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.