Abstract
In this note we study the property (aw), a variant of Weyl’s theorem introduced by Berkani and Zariouh, by means of the localized single valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (aw) holds. We also relate this property with Weyl’s theorem, a-Weyl’s theorem and property (w). Finally, we show that if T is a-polaroid and either T or T* has SVEP then f(T) satisfies property (aw) for each \({f \in H_1(\sigma(T))}\) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.