Abstract
In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.