Abstract
Saccades are stereotypic behaviors whose investigation improves our understanding of how primate brains implement precise motor control. Furthermore, saccades offer an important window into the cognitive and attentional state of the brain. Historically, saccade studies have largely relied on macaques. However, the cortical network giving rise to the saccadic command is difficult to study in macaques because relevant cortical areas lie in deep sulci and are difficult to access. Recently, a New World monkey. the marmoset, has garnered attention as an alternative to macaques because of advantages including its smooth cortical surface. However, adoption of the marmoset for oculomotor research has been limited due to a lack of in-depth descriptions of marmoset saccade kinematics and their ability to perform psychophysical tasks. Here, we directly compare free-viewing and visually guided behavior of marmoset, macaque, and human engaged in identical tasks under similar conditions. In the video free-viewing task, all species exhibited qualitatively similar saccade kinematics up to 25° in amplitude although with different parameters. Furthermore, the conventional bottom-up saliency model predicted gaze targets at similar rates for all species. We further verified their visually guided behavior by training them with step and gap saccade tasks. In the step paradigm, marmosets did not show shorter saccade reaction time for upward saccades whereas macaques and humans did. In the gap paradigm, all species showed similar gap effect and express saccades. Our results suggest that the marmoset can serve as a model for oculomotor, attentional, and cognitive research while we need to be aware of their difference from macaque or human.NEW & NOTEWORTHY We directly compared the results of a video free-viewing task and visually guided saccade tasks (step and gap) among three different species: marmoset, macaque, and human. We found that all species exhibit qualitatively similar saccadic kinematics and saliency-driven saccadic behavior albeit with different parameters. Our results suggest that the marmoset possesses similar neural mechanisms to macaque and human for saccadic control, and it is an appropriate model to study neural mechanisms for active vision and attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.