Abstract

ABSTRACTProperties of ultrathin (— lOnm) silicon nitride films on single crystal Si, InP and GaAs have been studied using Raman spectroscopy, medium energy ion scattering (MEIS), variable-energy positron annihilation spectroscopy and x-ray photoelectron spectroscopy (XPS). The silicon nitride films were prepared by remote microwave plasma chemical vapour deposition (RPCVD). The results showed that oxidation of the film due to air exposure was restricted to the near surface with an oxygen penetration depth no greater than 2 nm. The residual stress in the as-grown films was substrate-dependent. For films on Si (100), the film induced residual stress was compressive with a value of 0.5GPa. Annealing at 500°C for 60 minutes resulted in a complete release of the residual stress. Vacuum annealing at a temperature below 500° C also led to changes of the electrical properties in the films but not the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call